Firewall Performance Analysis Report

10 August 1995

Chris Kostick
Matt Mancuso

~ee
wJl

Computer Sciences Corporation
Secure Systems Center — Network Security Department
1340 Ashton Rd., Suite E
Hanover, MD 21076
(410) 850-5411

Table of Contents

1. EXECUTIVE SUMM ARY oottt ettt e e e e et ettt et e et et e e e e e e et e et st ea e s et e e e eaeaaenss 1
2. INITIAL FIREWALL CONFIGURATION PARAMETERS oo 3
B R =T =T T E oYy =5 I
2.2 NETWORK PARAMETER S . .1ttt ittt ittt ittt ettt ettt e s s e et e et et ea e e e s e e s st e et ta st e s et a b et ab e e tb e s s b e e sbrenenrenenens 3
2.3 FREMAKING THE KERNEL 1. tttuitttititetitetttae st sa e sa st et e s s s e e s e e sa e s s ea st tasa e s et a b et ab et sb e e sbeensareaenrenenens 3
2.4 FROXY SOURCEIM ODIFICATION 1.ttt tttttttttttte ittt eaes s eaea st ea et sa e ea s s ea s ea s s sa s ta sttt ettt et ssesnetrenssrensseenaseenses 4
2.5 ETC/INETD.CONFIMODIFICATION ..t tetettt et et et e e et e et e e e e e s e e e e e e s eaee et e e sa s e et e st seaessasean s et eeanssansss 5
3. TEST ENVIRONMEN T Lottt et e et e e et e e e e e e e et e et e et e ea s s s s s enseneeseenssastnaanns 7
I R I 3 O] N =10 =7 [7
3.2 FERFORMANCEANALYSIS IMETHODOLOGY v euitinititititettteaettstaeastesasataet s sse s steestetetseneatenesreaesernesaenaans 8
N I Y IS O N 4 1O 1 9
4.1 INDIVIDUAL PERFORMAN CE T E ST St uiuitititiititiit ittt ettt ettt ettt ea et sa ettt st e et s tas st e st ea et ttaeaaenesenssaenaenns 9
g Ot O I = 1\ | 9
Nt O e I 9
Nt O 8 N I 10
3 o = 1 11
i\ =y = =Y o Y =T = I T (O = =S 12
B, TEST RESULTS AND AN ALY SIS .. ettt ettt e e et e e e et e et s e st s e aenes 13
LTt O I = 10\ T 13
DL L RESUIS ..ottt e e e e et ea et ——mm———————————aa 13
LN AN o = 11T 13
LS T2 i I = 14
LIV N 2 LT U £ 14
L AN 4 = 11T 1 15
LTS L N 16
LT T B 2 =TT U £ 16
LTRC TZ A AN 4 F= 11T 1 18
LT | 19
LI N = LT U £ 19
L AN o =11 £ 19
D NETPERM T ABLE L OOKUP T E ST S i iuitititiititiiti ittt et ettt et e e et e et e e et e e ettt ettt et ea e s s b e e st e e st e e st ensneenanaes 20
LR R 2 LT U £ 20
LR AN o F= 11T 20
5. CON C LUSIONt e ettt e e e et et ettt e e et s e st s e e e e et et sastaenan 22.......
7. PERFORMANCE ENHANCEMENT RECOMMENDATIONS ... 23
R N ST S S i S = 1 1) T N 23
A\ =10 =T Gl 0] =Te T e 72 23
7.2.1 Multiple Firewalls / Multiple CONNECLIONScceeeiiiiieiiiieeeeeeeeeeee e 23.......
Y BT O oY g 1<Tox £ 0] o [24
T3 HT TP QACHING PROXIES ..ttt ittt et et e e e e et e e et e s et e s et e e et e e et e e et s e et e eas s eneaennaans 25
GLOS S ARY OF TERMS . ..o et e e et et e e e et e et et et s e e e e e e aaesaeaas 27

APPENDIX A — TEST SCRIPTS

APPENDIX B — DATA SET REPORTS ... e

List of Figures

Figure 1. Proxy Source Code Change to the listen() Call...........couuui i, 5
Figure 2. /etC/iNetd.CONTRIIEe e et e e et e e e e aba s
Figure 3./etC/rC.I0CAIPTOXY STAIUDuuuiiieeeiiie ettt e e e e e e ettt s e e e e e e e e e eeaaeaaa e s s e e e e eeeeeeeessnnnnnn 5
Figure 4. Laboratory CONfIQUIALIONciiiieeiiiiiiiiiiiiiis e e e ettt s s e e e e e e e e eeeaaea s s e e e e e eeeeeeesnnnnnnn 7
Figure 5. Connection Establishment Times for 128 and 256 CONNECLIONS.............cceiiiiieeeeeeeeeeenninns 13
Figure 6. 64 Simultaneous FTP CONNECHION TIMES........couuuuiiiiiiiieeeeeeeereeeiiiiinna e e e e e e e e e e eeerrrranaeeeeeas 15
Figure 7. 128 Simultaneous FTP CONNECHION TIMES.....uuiiiiieiiiiiiiiiiiiiiiise e e e e e e e e eeeeeeiiin s e e e e e eaeeeeennnes 15
Figure 8. Transfer Times for 256 and 512 HTTP GET's of a 50K Document...............cccevvvvvvennnnnnn. 17
Figure 9. 64 Simultaneous HTTP CoNNECION TIMES.......uuuuiiiiiiieeeeii it a e 17
Figure 10. 128 Simultaneous HTTP CONNECLION TIMES.......uuiiiiiieeeiiiiiiiiiiiiiiae e e e e e e e e e e e e 18
Figure 11. Multiple Firewall CONfIQUIAtIoNcooieiiiiiiiiiiiis e e e e 24
Figure 12. T3 Connection with 100 Mbps LAN SEgMENLS........ccvvviuiiiiiiiiieeeeeeeiiieiiiiiins e e e e e e eeeeeeaneees 25
Figure 13. Caching HTTP Proxy ENVIFONMENL.........uuuuiiiiiie et e e e e e e e eeeeeannne 26

List of Tables

Table 1. GAUNTLET Source Code MOAIfICAtION..........ccuiririiiiiiiiie e 4
Table 2. Test Lab Machine ArChiteCIUIESuuiiiiiiiiiiiiiiii e e e e e e e e oo 7.
TaDIE 3. FTP TESE SCENAIOScttitiiiiiiieee e ettt ettt et et e e e e e aaaaeaaaaaa e s e e e s e anannbabeebbbeeenees 10
Table 4. HTTP High Volume of Connections Test SCENAIQS..........ccovvviiviiiiiiiieeeeeeeeeeeeeinna e 10
Table 5. HTTP High Volume of Data TeSt SCENAIQASccevieiiiiiiiiiiiieeee et e e e e e eeeaaeeen 11
Table 6. E-Mail TEST SCENAIIOS.cceeiiiiiii ettt ettt e et e e e e e e e e e et e e e s s e e e e ab bbb bbb e s beeeeeeeees 11
Table 7. Files Types Used iN E-Mail TESISuuuiiiiiiiiiiiiiiiiiiii i e e 12..
Table 8. Netperm-table RUIE COUNL....... oottt e e et r e e e e e eaeeeaeesnnnnns 12
Table 9. Connection Establishment Time (in seconds) to the tn-gw Proxy..........cccccevvvvviiiiiiinnnneenn. 13
Table 10. Average FTP Transfer TImes (in SECONAS)......ccoviiiiiiiiiiiiiiiiie ettt e e e e eeeaeeeeeas 14
Table 11. HTTP High Volume of Connections Average Transfer TImes.............cvvveeiiiiieeeieeeeeeeninnnns 16
Table 12. Average HTTP Transfer Times (in SECONAS).......ccuuuuuuiiiiiiieeiieeiieiiiie e 17
Table 13. E-Malil TESE RESUILS......uuuiiiiiiiiiiiiiiii ittt et e et e e e e e e e e e e e e e e s s s e e aannnes 19
Table 14. Average Connection TIMe tO tN-gW PrOXY........uuuuuuuiiiiiiieeeiieeeiiiiiiias e e e e e e e eeeeeirnin e e eeees 20
Table 15. Filesystem CONfIgUIALION. it s e e e e e e e eeeeeeennanas 23

1. Executive Summary

The customer is in the process of a phased proof of concept deployment of firewall
technology to provide protected Internet connectivity to their organizational
infrastructure. Phase 1 of this effort involves: (a) the integration, installation, and set-up
of a GAUNTLET firewall in a stand-alone laboratory environment with simulated

outside (Internet) and inside (organizational) WANS/LANS; (b) the transition of the
firewall's outside connectivity from simulated to actual Internet connectivity; and (c) the
transition from a simulated inside organizational LAN to a live connection to the
organization’s IS Building as a trial deployment. As a part of the firewall deployment,
we conducted performance analysis testing to evaluate the throughput and processing
capacity of the firewall.

Cursory pre-testing revealed that the firewall could not support the desired connection or
data throughput requirements. In fact, certain system and proxy parameters actually
facilitated successful denial-of-service attacks against the firewall. Research into the root
causes of these failures mandated changes in the firewall kernel configuration, system,
disk partition, and proxy parameters. These new tuning parameters are required for
proper and secure operation of the firewall and are outlined in Section 2, Initial Firewall
Configuration Parameters. Once the firewall was re-configured and able to support
performance testing, we proceeded into the testing phase which was broken up into
several parts:

Test environment;

Test scenarios;

Test results and analysis; and
Conclusions.

The performance testing focused on the firewall’s ability to handle multiple simultaneous
connections and measured performance degradation when handling large amounts of
data. The firewall accomplished all of the tests successfully.

The performance analysis revealed that, in some cases, the firewall performance became
less than acceptable:

* Large numbers of simultaneous FTP transfers take an extraordinarily long
time to complete as compared to doing one transfer.

* Multiple concurrent connections, or multiple large data transfers using HTTP,
degrades the firewall seriously enough that it has a difficult time performing
other tasks.

* A large number of permission rules (5,000-10,000) in the
lusr/local/etc/netperm-tabjen conjunction with a high number of concurrent
connections causes a significant delay in process setup time.

CSC evaluated the firewall performance problems and explored methods of mitigating
the deficiencies. Our recommendations are included as Section 7, Performance
Enhancement Recommendations.

Overall, the firewall performed at acceptable levels. The hardware and software
configurations chosen for the firewall appear to be sound choices because of their highly
configurable nature. The tests were representative of high-end network conditions and
outside of the normal traffic load expected. Therefore, we believe the firewall
implementation chosen will meet the initial needs of the organization’s Internet
infrastructure.

2. Initial Firewall Configuration Parameters

The firewall will, potentially, be supporting many connections through it. The BSD
operating system, as delivered, is configured to handle only a moderate number of
processes and connections. The kernel needed to be modified to support a larger process
space and also to allocate more memory for network information. In addition, in order to
maintain a high number of concurrent connections, several of the application proxies
needed to be modified and recompiled.

The modifications had to be done to even begin conducting the tests. It is felt by CSC
that these modifications are mandatory for the organization’s firewall.

2.1 User Processes

The kernel derives the maximum number of processes it can run by the kernel variable
MAXUSERS defined in its configuration file. The formula used for the maximum
process table entries is 10+16*MAXUSERS. To adjust this, the file

/sysli386/sys/conf/ GAUNTLET-V8fs modified and the MAXUSERS line changed to
read:

MAXUSERS 256

This configured the kernel to maintain at most 4106 processes.

2.2 Network Parameters

Two options were added to the kernel configuration file in order to increase the firewall's
ability to accept and service many simultaneous connections. Added to the configuration
file /sys/i386/sys/conf/GAUNTLET-V8&@re the following lines:

options “SOMAXCONN=128"
options ‘NMBCLUSTERS=2048"

The options increased the amount of outstanding connection requests the firewall can
gueue for service and the maximum amount of network mbuf (memory buffer) clusters.
The total amount of memory allocated by the kernel for management of network
connections is NMBCLUSTERS*2048. The above will allocate 4MB of memory for
network information usage. This number can, of course, be increased.

2.3 Remaking the Kernel

After the kernel configuration adjustments were made, a new kernel was compiled
following the steps below:

cd /sys/i386/conf

config GAUNTLET-V30

cd /sys/compile/GAUNTLET-V30
make clean

make depend

make

When the compilation was finished, the new kernel was installed. The existing kernel
was saved to a backup copy using the following steps:

cp /bsd /bsd.orig
mv bsd /bsd

The system was rebooted. If the new kernel had not worked, the original kernel could
have been restarted by interrupting the boot process and booting from the saved kernel
using the following command:

Boot: sd(1,0,0,0)bsd.orig -w

Detailed instructions, and more information on all of the tunable kernel parameters, can
be found in the documeBluilding Kernels on BSD/OS Version 2xhich can be
accessed by the command line:

% man -m bsdi config

2.4 Proxy Source Modlification

The proxy processes that run on the firewall needed to be modified so that they were able
to handle incoming connections at a relatively high rate. The installed implementation of
the firewall proxies has limitations in the number of outstanding connections that can be
gueued. Not only should the kernel be modified (the SOMAXCONN option), but the

proxy applications need to be modified, as well. The proxies identified for source
modification aren-gw , rlogin-gw , ftp-gw , andhttpd-gw

The source files for the proxy programs are locatédsrlocal/src/fwtk Table 1 shows
the proxys that need modification, the directory location of each, and the specific files
and line numbers that need to be changed.

Proxy Directory Source Files Line Number
tn-gw /usr/local/src/fwtk/tn-gw tn-gw.c 1575
rlogin-gw /usr/local/src/twtk/rlogin-gw rlogin-gw.c 1361
ftp-gw /usr/local/src/fwtk/ftp-gw ftp-gw.c 1111
1735
http-gw /usr/local/src/fwtk/http-gw http-gw.c 2303
htmain.c 742
ftp.c 242

Table 1. GAUNTLET Source Code Modification

These modification are simple and involve only changing an argumentlist¢hé
system call in all of the sources. Tieten() call's second argument specifies for the

program, the number of outstanding connection requests that will be queued. The
recommended number for this argument is the SOMAXCONN option value, as defined
in the kernel configuration file. For our purposes, that number is normally 128. Figure 1
shows the “before” and “after” modifications of ttmegw.csource file. All of the other
proxies need to be modified in the same way.

(before)

if(listen(x,1) < 0) {
perror(“listen”);

exit(1);
(after)
iflisten(x, ~ 128) < 0){
perror(“listen”);
exit(1);

Figure 1. Proxy Source Code Change to thesten() Call

2.5 /etc/inetd.conf Modification

The source code changes had to be made because the proxies could not rely on inetd to
start them fast enough. If inetd had too many outstanding connection requests coming in,
it would shut down the service. Inetd could only queue up to 40 requests before all of the
others started receiving “Connection Refused” messages. To this emmgsttheonf

needs to only listen for two services — authsrv and auth. Also, the “rje” service can be
included for remote administration if desired. All of the other services the firewall
maintains will be started ifetc/rc.local Figure 2 illustrates the contents of thetd.conf

and Figure 2/etc/inetd.confile

shows the portion of thetc/rc.localfile that starts the other proxy services.

Internet server configuration database

#

@ (#)inetd.conf 5.4 (Berkely) 6/30/90

#

re stream tcp nowait root /usr/local/etc/netacl telnetd

authsrv stream tcp nowait root /usr/local/etc/authsrv authsrv
auth stream tcp nowait nobody /usr/localletc/identd identd

Figure 2. /etc/inetd.confFile

Jusr/local/etc/smapd
/usr/local/etc/mqueue &
Jusr/local/etc/smap -daemon &
/usr/local/etc/tn-gw -daemon &
Jusr/local/etc/rlogin-gw -daemon &

/usr/local/etc/ftp-gw -daemon ftp ftp-gw &
/usr/local/etc/http-gw -daemon 80 &
/usr/local/etc/http-gw -daemon 70 &

Figure 3./etc/rc.localProxy Startup

3. Test Environment

3.1 Lab Configuration

The performance testing was conducted in the CSC laboratory in Hanover, MD, using
the configuration shown in Figure 4.

Internal Network

@ Router IN-RTR

voyager

Figure 4. Laboratory Configuration

The architecture of each machine is specified in Table 2.

Machine Name Architecture Operating System | Memory
IN-RTR, EX-RTR Wellfleet ASN ROM 8.0.1

relay Compag Proliant 1500 BSD 2.0 208M
borg Sun 4/60 Sun0S 4.1.3 Ul 16M
defiant Sun Sparcstation 1+ Sun0S 4.1.3 Ul 32M
voyager Sun Sparcstation 1+ Solaris 2.4 32M
lightspeed DECstation 5000/24pD Ultrix 4.4 48M
enterprise NeXTstation NextStep (Mach 2(0) 20M

Table 2. Test Lab Machine Architectures

3.2 Performance Analysis Methodology

The performance analysis of the firewall consisted of several tests to measure the
possible throughput degradation of well-used services. The primary services considered
were TELNET, FTP, HTTP, and E-mail. Other services which will be going through the
firewall, such as DNS, were not considered because of their relatively light traffic load.

The testing environment has many variables involved with evaluating the performance of
the firewall: connection setup time on the initiating host, connect setup time of the
receiving host, the number of concurrent processes on the each of the testing machines,
and the bandwidth of the intermediate networks.

The bandwidth of the networks was not an immediate factor in the lab tests. The end-to-
end connection consisted of ethernet networks with a transmission rate of 10 Mbps. For
the initial installation in the organization’s network, the firewall will sit behind a 56 Kbps
connection to the Internet; therefore, these tests show performance of the firewall under
high throughput network connections. The test conditions were set up such that the
networks were not active with other traffic at the time. The hosts only had to compete
with each other for the bandwidth of the ethernet.

The variables involving the initiating and receiving machines on either side of the
firewall play a part in the variances of some of the results. Nonetheless, these variances
should be consistent and should not be a factor when considering of the overall
performance of the firewall.

4. Test Scenarios

The performance tests were broken into two categories.

* Individual performance tests; and
* Netperm-table lookup evaluations.

4.1 Individual Performance Tests

The individual performance tests measure the relative degradation of each service to be
active through the firewall. The services measured are TELNET, FTP, HTTP, and E-
mail.

4.1.1 TELNET

TELNET sessions are used for remote terminal emulation over a network, essentially
remote logins. While TELNET is considered a low-bandwidth service because of its
interactive nature, it is a popular service and, therefore, can have a cumulative
performance impact. The tests run for TELNET, however, were not designed for
throughput considerations. Rather, the TELNET tests gave an indication of performance
degradation of running multiple concurrent processes. The test was run in several
scenarios:

e 1 connection;
e 128 concurrent connections; and
e 256 concurrent connections.

The single connection establishes a baseline for connection setup time. The 128 and 256
concurrent connections test any variations in setup time for progressively more
connections to the-gw proxy process. Connections were established to the bastion

host where they sat idle for four minutes, and were then released. Each connection was
timed and the difference between the total time taken and the four minute idle time
represented the connection setup time.

4.1.2 FTP

Ftp, the program, is an implementation of the File Transfer Protocol (FTP). File transfers
are one of the more bandwidth-intensive applications on the Internet today. It is expected
that a number of FTP sessions will be running simultaneously on the firewall through the
ftp-gw proxy. The FTP tests focused on throughput considerations and were designed
to measure the amount of throughputfthegw proxy process can handle. The FTP

tests were run under the scenarios listed in Table 3.

Number of Concurrent
Connections File Size

1 256K

M

SM

10M

64 256K

M

SM

10M

128 256K

M

SM

10M

Table 3. FTP Test Scenarios

4.1.3 HTTP

The hypertext transfer protocol (HTTP) is the protocol most widely used for World Wide
Web (WWW) access. Applications using HTTP became the most bandwidth intensive
programs on the Internet in 1994, surpassing even E-mail. Most environments that have
direct Internet access have followed this pattern and the organization will probably be no
different. The HTTP tests examined two different environments: high volume of
connections and high volume of data. Table 4 describes the various performance tests for
high volume of connections and Table 5 shows the test events for high volume of

data.
Number of Concurrent
Connections HTML Document Size
1 50K
256 50K
512 50K

Table 4. HTTP High Volume of Connections Test Scenarios

Number of Concurrent

Connections HTML Document Size
1 512K
1M
2M
64 512K
1M

' Document size based on a rough average of the HTML documents found on 10 of the most popular Web

sites on the Internet.

10

2M

128 512K

M

2M

Table 5. HTTP High Volume of Data Test Scenarios

4.1.4 E-mall

Electronic mail, or E-mail, was the most used application on the Internet since its
inception over twenty years ago. It is the primary mechanism of communication for users
on different networks other than the Internet, such as BITNET and UUCP networks, as
well as on-line services, such as CompuServe, America On-Line, and Prodigy. It is
estimated that 12 million people use E-mail over the Internet. E-mail will remain a
mainstay of communications on the Internet for a while. organizational users will
undoubtedly contribute to the vast amount of E-mail traversing the Internet everyday.

The E-mail performance tests were designed to evaluate the amount of E-mail the
firewall can process and how well the firewall handles large E-mail messages. E-mail
going into and out of the organization’s network will go through the firewall. However,
E-mail going ‘through’ is not the same as other services, such as TELNET or FTP. With
FTP for example, the firewall establishes a connection throudtptbe proxy. E-

mail is a store-and-forward service using $heap andsmapd proxy processes. Mail is
received, stored on the firewall, and later delivered to the internal mailhub. Therefore, E-
mail test scenarios will differ from the preceding test scenarios. The queuing nature and
the variability of sendmail V8 prohibit any accurate measurement of how ‘long’ it took

to deliver the mail.

The E-mail tests, listed in Table 6, will yield a measurement of success, as opposed to
a measurement of time. Snapshots of queue sizes will be taken and system utilization
monitored. Message sizes were based on the files listed in Table 7.

No. of Messages
(concurrent) Message Size
512 10K
128 564K
128 1.2M

Table 6. E-mail Test Scenarios

File Size Files Type
10K ASCII Text
564K uuencoded GIF file
1.2M Postscript file

11

Table 7. Files Types Used in E-mail Tests

4.2 Netperm-table Lookup Tests

Whenever an application proxy is started to service a connection, it will read the contents
of the/usr/local/etc/netperm-tabli®oking for any rules that apply to it. It will then
determine, based on those rules, if it is allowed to service that connection and whether or
not additional functions, such as logging and/or authentication, need to take place.

The netperm-table tests measure any performance degradation due to the reading of a
large netperm-table from disk for every proxy. The tests conducted will be the same as
the 256 TELNET connections test described in Section 4.1.1 with the addition of the
netperm-table modifications as shown in Table 8.

No. of Rules
for tn-gw proxy

500

1000

2000

5000

10000

Table 8. Netperm table Rule Count

12

5. Test Results and Analysis

5.1 TELNET

The TELNET tests were run under the scenarios described in Section 4.1.1. The firewall

was able to establish all of the TELNET connections simultaneously.

For the 128 connections test, 64 were run from defiant (tests 1-64) and 64 were run from
borg (tests 65-128). For the 256 connections test, 128 were run from defiant and 128
were run from borg. Appendix A contains the shell scripts used for generating the traffic.

5.1.1 Results

Table 9 shows the average times (in seconds) for connection establishment to the
firewall. Figure 5 illustrates the connection times charted for both 128 and 256

simultaneous connections. Appendix B contains the raw data set for the measured times.

No. of Concurrent | Minimum Connect| Maximum Connect| Average Connect
Connections Time Time Time
1° 0 1 0.233
128 0 6 1.266
256 0 4 1.023

Table 9. Connection Establishment Time (in seconds) to the-gw Proxy

Seconds
o N W b~ 01 O

128

Connection

256

w

Seconds
¢ ' N ¢
O Ul = O N U1 W o b~

=

o

Connection

Figure 5. Connection Establishment Times for 128 and 256 Connections

5.1.2 Analysis

The firewall had no problem in maintaining connection establishment times at a

reasonable level. And, as can be seen in Table 9, connection establishment was not

* Data collected as a series of individual connections one after another with no other connections

established.

13

degraded as mote-gw processes were started. On the contrary, time seemed to
improve. However, because the time periods being measured were so short, it is hard to
conclude that 256 simultaneous connections can be handled ‘better’ than 128. But it can
be said that, with 256 connections, the level of service will be the same as 128. The
amount of connections the firewall can handle scaled beyond the capacity with which the
internal Sparcstations could generate.

5.2 FTP

The FTP tests were run under the scenarios described in Section 4.1.2. The firewall was
able to perform all of the file transfers. Not all of the tests could be conducted, however,
because the Sparcstations on the internal network were unable to generate the traffic load
necessary for the 128 simultaneous 10M file transfer.

For the 64 connections test, 32 were run from defiant (tests 1-32) and 32 were run from
borg (tests 33-64). Defiant and borg were the initiating machines where first a connection
was made to voyager and a file retrieved, and then a connection was made to lightspeed
and a file retrieved. The FTP processes were ‘backgrounded’ so that they all started at
relatively the same time. For the 128 connections test, 64 were run from defiant (tests 1-
64) and 64 were run from borg (tests 65-128) utilizing the same procedures as the 64
connections tests. Appendix A contains the shell scripts used to perform the tests.

5.2.1 Results

Table 10 shows the average times for completion of the file transfers. Figure 6
and Figure 7 illustrate the file transfer times for 64 and 128 concurrent connections,
respectively. Appendix B contains the raw data sets for the measured times.

No. of Concurrent Connections
File Size 1 64 128
256K 1.87 42.19 100.50
M 7.52 262.09 503.49
5M 37.5 1425.33 2786.86
10M 74.5 2866.88 —

Table 10. Average FTP Transfer Times (in seconds)

14

64 FTP Connections

3500 T

3000 + pRTTTTTTT T ee PR

2500 | EREA e R . 256K
" M
'g 2000 T 5M
[R S,
& 1500 T 10M

1000 T

500 T

Connection
Figure 6. 64 Simultaneous FTP Connection Times
128 FTP Connection Test

3500

3000 SRR

2500 4

256K

é 2000 1M
& 1500 oM

1000

500 -WWW‘“‘”‘WMW e ———

0 LLL i
Connection
Figure 7. 128 Simultaneous FTP Connection Times
5.2.2 Analysis

Several items can be observed from the test results. First, as expected, the more
connections going through the firewall, the slower the transfer times. It should be noted
that all of the transfers were able to finish as far as the firewall was concerned. Test
number 107 of the 128/5M transfer could not be completed. However, this was not due to

15

the firewall. One of the test machines (borg) was unable to handle that one connection.
That failure explains the sharp drop in the graph at that point. Similarly, the 128/10M
tests could not be performed, again, however, not due to a failure of the firewall.

A second observation is that the time delay is not linear. This means that when doing 64
simultaneous connections, it did not take 64 times longer than one connection. The same
was true for 128 connections. Nonetheless, the transfer times were not extraordinary.

The CPU utilization was monitored during all of the file transfers. The processor’s idle
time only went below 60% once (down to 59.1%) during the 128/5M transfer. This
means that the firewall was relatively free to do other processing.

The graphs reveal some information about the variances of the sending and receiving
hosts. Notice at the middle of the transfers that the graph takes a jump. This is because of
the difference between defiant and borg. Borg, being slower and with less memory, had

to do more swapping and, therefore, its transfer times were slower. Also, the chart lines
have a relative up and down motion for the transfers. This is due to disparities in the disk
access speeds of the sending hosts (lightspeed is much faster than voyager). Despite those
disparities, the chart lines for the 5M and 10M transfer times are relatively level. This is

due to BSD’s load balancing of thg-gw processes.

5.3 HTTP

The HTTP tests were run under the scenarios described in section 0. The firewall was
able to perform all of the HTTP GET protocol requests.

The machines lightspeed and voyager had httpd v1.4 with several HTML documents and
GIF files available for retrieval. For the 256 connections test, 128 were run from defiant
(tests 1-128) and 128 were run from borg (tests 129-256). Each machine used the lynx
program to retrieve a specified document. The retrievals were ‘backgrounded’ so that
they would all start at relatively the same time. The 512 connections test, as well as all of
the high volume of data tests, followed the same scenario as the 256 connections test.
The first half of the connections originated from defiant and the second half originated
from borg. Appendix A contains the shell scripts used for the tests.

5.3.1 Results

Table 11 shows the average transfer times for retrieving a 50K document through HTTP.
Figure 8 illustrates the transfers times for both 256 and 512 concurrent connections.

No. of Concurrent Average Transfer Time
Connections (seconds)
1 3.25
256 8.18
512 32.53

Table 11. HTTP High Volume of Connections Average Transfer Times

16

256

Connection

512

Connection

Figure 8. Transfer Times for 256 and 512 HTTP GET's of a 50K Document

Table 12 shows the average transfer times for the scenarios described in Section
0. Figure 9 illustrates the connections times for 64 simultaneous connections and Figure

10 illustrates the connection times for 128 simultaneous connections.

No. of Concurrent Connections
Document Size 1 64 128
512K 4.37 25.67 43.05
1M 5.28 80.67 104.92
2M 7.33 164.22 256.23

Table 12. Average HTTP Transfer Times (in seconds)

200 1
180 1
160 1
140 1
120 1
100 1

80 1

60 1

Seconds

64 HTTP Connections

40 1
20 -W/WM

Connection

—>512K
— 1\
—2M

Figure 9. 64 Simultaneous HTTP Connection Times

17

128 HTTP Connections

350 1
300 1
250 1

200 1 , M

150 1 U oM
100 -

50

—>512K

Seconds

Connection

Figure 10. 128 Simultaneous HTTP Connection Times

5.3.2 Analysis

The HTTP tests showed a remarkable change compared to the TELNET and FTP tests.
Several observations were made when sending HTTP traffic though the firewall.

By far the most important was that CPU utilization went to 100%, or 0% idle, both the

high number of connections and high volume tests. The firewall could only accomplish
one task — run thettp-gw proxies. That was an incredible change compared to FTP
where, doing the same transfer (128/1M), the CPU sat 60% idle. The relative idle time
going to 0% is meaningless unless the load average of the system is also considered. The
load average is an averaged count of the number of processes waiting in the run queue
normally measured over the last 5, 10, and 15 seconds. On a system with little load, this
number should be between 0.0 and 1.0. Whiléntipegw proxies were running, the

system load average climbed to an astonishing 21.32.

It was also noted that BSD did not load balance the processes as well as it did for FTP.
The times were sporadic, not consistent. However, the transfer times were muclv faster (
- '/, the time) than a comparable FTP transfer, but at a price of more processor time.

To further investigate the resource-intensive nature ditthegw proxy, a source-code

level examination was done. Thgp-gw proxy was profiled to see where the code was
spending most of its time. This analysis revealed that the proxy spent a great deal of time
executing theead() andwrite() system calls. This was to be expected since it was
doing a lot of socket I/0O. However, after looking at the network traffic of one of the

HTTP transfers, it seemed it was doing far more than necessary. The same FTP transfer
had’/, less traffic on the network than HTTP. Another problem noticed httiphgw

was that it was spending a lot of time in string function routines. This was traced to the
behavior of thenttp-gw proxy parsing every request that it received from both the

client and the external server sides. The parsing routines had a large impact on the CPU.

18

5.4 E-mail

The E-malil tests were run under the scenarios described in Section 4.1.4. The firewall
was able to perform all of the mail deliveries required for the tests.

The machines lightspeed and enterprise were the sending machines. Mail messages were
sent to the firewall, where it, in turn, delivered the mail to the internal mailhub (defiant).
For the 256 deliveries test, 128 were run from lightspeed (tests 1-128) and 128 were run
from enterprise (tests 129-256). Each machine used the sendmail program to send the
mail message. The deliveries were ‘backgrounded’ so that they would all start at

relatively the same time. For the 128/564K and 128/1.2M tests, 64 were run from
lightspeed (tests 1-64) and 64 were run from enterprise (tests 65-128). Appendix A
contains the shell scripts used for the tests.

5.4.1 Results

Table 13 shows the results of the E-mail tests described in Section 4.1.4.

No. of | Successfu
Test Messages| Delivery | Average Load | Max. Queued Low ldle
10K Message Size 256 YES 2.43 114 44.1%
564K Message Size 128 YES 2.62 87 0.5%
1.2M Message Size 128 YES 1.25 61 0.0%

5.4.2 Analysis

Table 13. E-mail Test Results

The E-malil tests were all successful and posed no significant problem for the firewall. It
should be noted the CPU idle times did go down to 0.5% and 0.0%. However, the load
average stayed between 1.25 and 2.62. This indicates that, while the idle times went
down to 0.0%, it happened infrequently. After monitoring which processes caused the

high CPU utilization, it was determined that sendmail was the culprit. \A&fhep or

smapd ran, the CPU remained relatively free. Sendmail would not have caused a high
CPU utilization on the firewall anyway. The program has an entry ifetblsendmail.cf

file that will cause it to queue any remaining mail for later if the load average goes above
a certain thresholdThe option

Oxn

has a value afl that defines the threshold. The initial valuenafas 4.

Since theDx option is a tunable parameter and one of the basic functions of the firewall
is to deliver mail, it is probably suitable to adjust this number to a larger value, such as

10 or 12.

® The calculation is actually a little more involved than just described, but for our purposes the given

definition will suffice.

19

The queue sizes for the firewall did not remain at zero as would be expected since the
load average did not go above four. The reason messages were queued was do to the
mailhub receiving the messages. Sendmail has another option/'@tctlsendmail.cfile

that will cause sendmail to refuse more connections when the load average becomes
higher than the defined value. The optio®}$ and this turned out to be the case with
defiant. It did not seem necessary to change this value for further testing because the
messages were successfully delivered later by the firewall.

A problem that was noted during the E-mail tests was the auth service for the IDENT
protocol was shutdown a couple of times. Sendmail V8 uses the IDENT protocol in an
attempt to read the login name of the user who initiated the connection. This was once
again traced back to inetd not being able to handle more than 40 simultaneous
connections. A solution would be to run a modifigghtd process listening on the auth
port and not have inetd service those connections.

5.5 Netperm-table Lookup Tests

The tests concerning thasr/local/etc/netperm-tableere conducted according to the
scenarios described in Section 4.2. The same scripts used for TELNET were used for the
netperm-table tests and are included in Appendix A.

5.5.1 Results

Table 14 shows the average connection setup times for 256 connections in conjunction
with the additionatn-gw rules. As a baseline, the average connect time for a single
connection is also given. Appendix B contains the raw data sets for the measured times.

Avg. Connect Time (secs

Avg. Connect Time (secs

netperm-table

No. of Rules 1 Connection 256 Connections File Size
500 0.23 1.37 23K
1000 0.50 1.25 37K
2000 0.75 1.93 63K
5000 1 16.22 156K
10000 1 156.03 248K

Table 14. Average Connection Time ten-gw Proxy
5.5.2 Analysis

Obviously, there was an impact when more rules were added to the netperm-table. A
significant jump was noticed between 2000 and 5000 rules. However, disk access was
not the problem. The proxy reads the netperm-table every time it starts. But, since BSD
caches file accesses, file reads were from memory and not from disk. The problem
stemmed from the fact that the file being searched in memory was being accessed by 256
processes at the same time. Apparently, the BSD operating system is not able to handle

this concurrent access situation with speed.

20

We initially postulated that increasing the disk cache by adjusting the kernel parameter
BUFMEM might improve the system’s access time. However, BSD, by default, uses
10% of physical memory for disk caching. For the firewall machine, this turned out to be
21 Mb, which was more than enough.

21

6. Conclusions

The network topology for the experiments was end-to-end ethernet connectivity, and the
firewall functioned exceptionally well. The “live” connection in the customer’s
environment will be a 56 Kbps line to the Internet. This will be the bottleneck, not the
firewall. Because the firewall is at the point of the bottleneck, it is often blamed for
performance problems, when actually lack of bandwidth is the root cause.

The firewall performed well, even under stressful conditions, only after the kernel was
reconfigured and the application proxies were modified to handle a larger queue size for
connections waiting to be accepted. At no time did the firewall fail to complete a task
once the modifications were made. This is not to say there were not problems.

The firewall handled large amounts of traffic through FTP well. However, it suffered a
great deal with moderate to large amounts of HTTP traffic. Even though the FTP
transfers were handled smoothly, the transfer times became increasing large to the point
where it took 47 minutes to transfer a 10 MB file.

The netperm-table lookup tests showed the proxy connection setup time became
intolerable when using a large number of rules in conjunction with multiple concurrent
connections. The threshold where setup time approached a level of unacceptability was
near 5000 rules for 256 simultaneous connections. This should not be viewed as a
significant problem, however. Even for an environment as large as the customer’s, 5000
rules applied to one service is far beyond what will actually be used.

E-mail never appeared to be a problem. When the system load became too high on either
the sending or receiving machines, the mail was simply queued for later delivery.

Overall, the hardware and software chosen for the firewall implementation seems to be a
sound choice from a performance perspective. The BSD operating system is flexible and
highly configurable. The GAUNTLET toolkit provides the source code to the proxies

and this allowed for convenient modification to the applications, when needed. The
Compag Prolinea has plenty of memory, a fast CPU, and more than enough disk space.
The performance tests executed for this report are representative of very high-end
network conditions. Those conditions exceed the customer’s normal environment.
Therefore, it is expected the firewall will meet the needs of the customer.

22

7. Performance Enhancement Recommendations

The firewall is one component of the overall connectivity architecture. Other

mechanisms and network topologies can be implemented to increase the performance of
the firewall. Outlined in this section are a few recommendations to help improve the
entire firewall structure.

7.1 Filesystem Partitioning

The Compaq machine is configured with 12 GB of disk space - two 2 GB drives and two
4 GB drives. Initially, only one drive is configured for firewall usage, one of the 2 GB

drives. Table 15 describes how the filesystems should be setup.
Drive Size Partition(s)
sd0 2 GB /, lusr
sdl 2 GB /usr/local
sd2 4 GB Ivar
sd3 4 GB /var/log

Table 15. Filesystem Configuration

The key is to putvar and/var/log on their own partitions. This allows substantial disk
space for logging/Yar/log) and for queuing mailyar).

Larger filesystem capacity will allow the firewall to maintain more logs for auditing
purposes and also be able to accept and queue more mail. A larger mail queue takes the
burden of possibly queuing the mail for later delivery off the originating machine, thus
saving network bandwidth.

7.2 Network Topology

At the very least, a T1 line (1.544 Mbps) should be the connectivity to the Internet.
However, for the size and expected amount of traffic from the internal network, that may
still prove to be a bottleneck. Other network architectures should be considered in order
to gain maximum performance from the firewall. Two are suggested below.

7.2.1 Multiple Firewalls / Multiple Connections

A multiple firewall configuration is illustrated in Figure 11. This architecture statically
balances services by offering dedicatharatepaths through the firewalls to the
Internet. As an example, relayl would handle TELNETSs, FTPs, DNS, E-mail, etc.
Relay2 would be the HTTP proxy server and, probably, the secondary DNS.

This type of architecture also provides good reliability. To continue the example, relay?2
can be setup to provide TELNET, FTP, and E-mail, but only when relayl is detected as
no longer functioning. Configuring the firewall to perform this function is a little more
than trivial, but possible.

23

~

Internet
<= —=

Figure 11. Multiple Firewall Configuration

7.2.2 T3 Connection

The high-end solution would be to have a T3 connection (45 Mbps) from the Internet
provider. Obviously, there is a substantial cost factor involved with this architecture. The
bottleneck at this point could be the ethernet segments on either side of the firewall. A
better architecture would be the one illustrated in Figure 12, where 100 Mbps LAN
segments would sit on either side of the firewall leading into the internal networks
infrastructure. The LAN segments could either be 100 Mbps FastEthernet or FDDI fiber
rings. BSDI will have network drivers for both network architectures available in early
September, 1995.

24

Internet, Internet,

~#— T3 (45 Mbps) connection ~#— T3 (45 Mbps) connection

100 Mbps FastEthernet

FDDI (100 Mbps)
Firewall
(o

100 Mbps FastEthernet

Firewall

FDDI (100 Mbps)

Figure 12. T3 Connection with 100 Mbps LAN Segments

7.3 HTTP Caching Proxies

Because HTTP is such a resource intensive application and causes hard performance hits
on the firewall, special considerations should be given to its use. The goal is to have as
little HTTP traffic as possible going through the firewall while still maintaining full

service to the Internet. Fortunately, for HTTP, there is a solution — a caching proxy.
Essentially, what would be created is a double-proxy environment. Figure 13 illustrates
the architecture used for this proxy-within-a-proxy environment.

The flow of information first starts at the client making a request to the caching proxy

(1), instead of the firewall. The caching proxy will examine the URL and, if the request
had not been made earlier in the day, it will forward the request to the firewall (2). The
firewall will obtain the information from the Internet (3)(4) and send the reply back to

the caching proxy (5). The caching proxy will store the URL source information on disk
and send the final reply back to the client (6). If a second request is made for the same
URL, or another user on the internal network wishes to retrieve the same information, the
caching proxy will already have the file and be able to respond directly skipping steps

(2), (3), (4), and (5). By doing so, much of the HTTP traffic going through the firewall

will be off-loaded.

To take this scenario a step further, it may turn out that the caching proxy will become a

bottleneck on the internal network. To alleviate this problem, several caching proxies can
be setup within the internal network. By using a version of DNS that supports round-

25

robin queries (for example, bind v4.9.3), DNS client requests for the caching proxy’s IP
address will be given a different one from the available list of proxies. Effectively, this
load balances the HTTP requests between all of the internal caching proxies.

~

Internet

Disk Cache

Figure 13. Caching HTTP Proxy Environment

26

GLOSSARY OF TERMS

BSD e Berkeley Software Distribution
BSDI .o Berkeley Software Design, Inc.
CPU Central Processing Unit

DN S Domain Name System

FDDI . Fiber Distributed Data Interface
TP File Transfer Protocol
G Gigabytes

G Graphics Image Format
HTML e HyperText Markup Language
HT TP e HyperText Transfer Protocol
IDENT oo Identification Protocol

I e Internet Protocol
KPS, Kilobits per second

LAN e Local Area Network

MB .. Megabytes

MBS, e Megabits per second

O Operating System

TELNET .o Terminal Emulation over a Network
U0 Lo] = O UNIX to UNIX Copy

URL e Universal Resource Locator
WAN e Wide Area Network

27

APPENDIX A — Test Scripts

TELNET Scripts

DEFIANT

#!/bin/sh

#

PATH=/bin:/usr/bin:/usr/ucb:/usr/5bin:/etc:/usr/etc; export PATH
Echo=/usr/5bin/echo

if [$# -eq 0]; then
$Echo "usage: $0 #_of_tests"

exit
fi
#
fill DNS cache
#

nslookup relay.orgn.ashton.csc.com >/dev/null
N=$1
while ["$N" -ge 1]
do
echo Test $N
(date>tn-$N; telnet relay.orgn</dev/console >/dev/null; date >>tn-$N)&

N="expr $N - 1
done

BORG

#!/bin/sh

#

PATH=/bin:/usr/bin:/usr/ucb:/usr/5bin:/etc:/usr/etc; export PATH
Echo=/usr/5bin/echo

if [$# -eq 0 |; then
$Echo "usage: $0 #_of_tests"

exit
fi
#
fill DNS cache
#

nslookup relay.orgn.ashton.csc.com >/dev/null

N=$1
N="expr $N + $N"
end="expr $1 + 1°

while ["$N" -ge "$end"]
do

echo Test $N
(date>tn-$N; telnet relay.orgn </dev/console >/dev/null; date >>tn-$N)&
N="expr $N - 1

done

Summary script

#!/usr/local/bin/perl
#
usage: telsumm.pl tn-* > file

$n_connects = $#ARGV + 1;
foreach (@ARGV) {

$file =9$_;

$test_no = (split(/-/, $file))[1];

open (IN, $file) || die "could not open file $file\n";
$t1=<IN>; $t1 =~tr/ / /s;

$t2=<IN>; $t2 =~ tr/ / Is;

close IN;

$t1 = (split(/ /, $t1))[3];
$t2 = (split(/ /, $t2))[3];

$t1h= (split(/:/, $t1))[O];
$tim= (split(/:/, $t1)[1]:
$t1s= (split(/:/, $t1))[2];
$timel = $t1h*60*60 + $t1m*60 + $tls;

$t2h= (split(/:/, $t2))[O];
$t2m= (split(/:/, $t2))[1];
$t2s= (split(/:/, $t2))[2];
$time2 = $t2h*60*60 + $t2m*60 + $t2s;

$actual_time = $time2 - $time1;
$mod_time = $actual_time - (4*60);

$real[$test_no] = $actual_time;
$setup[$test_no] = $mod_time;

}

for (1..$n_connects) {

printf "Test # %3d Actual Time: %d Setup Time: %a\n", $_,
$real[$_], $setup[$_];
}

FTP Scripts

DEFIANT

#!/bin/sh
#
PATH=/bin:/usr/bin:/usr/etc:/usr/ucb:/etc; export PATH

Echo=/usr/5bin/echo
remfile=256K
$Echo "Testing $1 ftp connections..."

cat >/tmp/$$ <<END
get $remfile /dev/null
quit

END

nslookup relay.orgn.ashton.csc.com > /dev/null
nslookup voyager.ashton.csc.com > /dev/null
nslookup lightspeed.ashton.csc.com > /dev/null

N=$1
while ["$N" -ge 1]
do

$Echo "Test $N started...”
(date>ftp-$N;ftp -iv voyager.ashton.csc.com </tmp/$$ >>ftp-$SN;date>>ftp-$N)
&

N="expr $N - 1

(date>ftp-$N;ftp -iv lightspeed.ashton.csc.com </tmp/$$ >>ftp-$N;date>>ftp-
$N) &

N="expr $N - 1

sleep 1
done

rm -r /tmp/$$

BORG

#!/bin/sh
#
PATH=/bin:/usr/bin:/usr/etc:/usr/ucb:/etc; export PATH

Echo=/usr/5bin/echo

remfile=256K

$Echo "Testing $1 ftp connections..."

cat >/tmp/$$ <<END

get $remfile /dev/null

quit

END

nslookup relay.orgn.ashton.csc.com > /dev/null
nslookup voyager.ashton.csc.com > /dev/null
nslookup lightspeed.ashton.csc.com > /dev/null
N=$1

N="expr $N + $N"

end="expr $1 + 1°

while [$N -ge $end]
do

$Echo "Test $N started...”
(date>ftp-$N;ftp -iv voyager.ashton.csc.com </tmp/$$ >>ftp-SN;date>>ftp-$N)
&

N="expr $N - 1

(date>ftp-$N;ftp -iv lightspeed.ashton.csc.com </tmp/$$ >>ftp-$N;date>>ftp-
$N) &

N="expr $N - 1

sleep 1
done

rm -r /tmp/$$

Summary Script

#!/usr/local/bin/perl
#
usage: ftpsumm.pl ftp-* > file
@files = sort by_ext @ARGV;
foreach $f (@files) {
open(IN, $f) || die "cannot open file $\n";
$line="";
@t =();
while (<IN>) {
tr/ /'/s;
/EDT 1995/ && do { @t=(@t, (split(/ /, $))[3]); };
/bytes received/ && do { $line=$_; };

}
if (length($line) == 0) {
die "recieve statistics not found in file $f\n";

close IN;
($bytes, $nulll, $null2, $null3, $time, $rest) = split(/ /, $line);
if (@t) {

$t1 = $t[0];

$t2 = $t[1];

$t1h= (split(/:/, $t1))[O];
$t1m= (split(/:/, $t1)[1]:
$t1s= (split(/:/, $t1))[2];
$timel = $t1h*60*60 + $t1m*60 + $tls;

$t2h= (split(/:/, $t2))[0];
$t2m= (split(/:/, $t2))[1];
$t2s= (split(/:/, $t2))[2];
$time2 = $t2h*60*60 + $t2m*60 + $t2s;

$time = $time2 - $time1;

}

$test_no = (split(/-/, $f))[1];

printf "Test # %3d: Time: %.3f (%.5f Kbytes/s)\n", $test_no, $time,
($bytes/1024/$time);

@time_list = (@time_list, $time);

$min = (sort by_num @time_list)[0];
$max = (sort by _num @time_list)[$#time_list];
foreach (@time_list) {

$sum +=$_;

$avg = $sum / $test_no;

print "\n";

printf "Minimum time: %.3f\n", $min;
printf "Average time: %.3f\n", $avg;
printf "Maximum time: %.3f\n", $max;

sub by_ext {

(split(/,$a))[1] <=> (split(-/,$b))[1];
}

sub by _num {
$a <=> $b;
}

HTTP Scripts

DEFIANT - High Connect

#!/bin/sh
PATH=/usr/bin:/bin:/usr/local/bin:/usr/ucb:/etc:/usr/etc; export PATH
Echo=/usr/5bin/echo

nslookup relay.orgn.ashton.csc.com > /dev/null
nslookup voyager.ashton.csc.com > /dev/null
nslookup lightspeed.ashton.csc.com > /dev/null

doc=ascii_text.html

http_proxy=http://relay.orgn.ashton.csc.com:80/
export http_proxy

N=$1
while [$N -gt 0]
do

echo "Test $N..."
(date>http-$N;lynx -source \
http://voyager.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
(date>http-$N;lynx -source \
http://lightspeed.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
done

DEFIANT - High Volume

#!/bin/sh
PATH=/usr/bin:/bin:/usr/local/bin:/usr/ucb:/etc:/usr/etc; export PATH
Echo=/usr/5bin/echo

nslookup relay.orgn.ashton.csc.com > /dev/null
nslookup voyager.ashton.csc.com > /dev/null
nslookup lightspeed.ashton.csc.com > /dev/null

doc=1M # specify file to get here

http_proxy=http://relay.orgn.ashton.csc.com:80/
export http_proxy

N=$1
while [$N -gt 0]
do

echo "Test $N..."
(date>http-$N;lynx -source \
http://voyager.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
(date>http-$N;lynx -source \
http://lightspeed.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
done

BORG - High Connect

#!/bin/sh
PATH=/usr/bin:/bin:/usr/local/bin:/usr/ucb:/etc:/usr/etc; export PATH
Echo=/usr/5bin/echo

nslookup relay.orgn.ashton.csc.com > /dev/null

nslookup voyager.ashton.csc.com > /dev/null
nslookup lightspeed.ashton.csc.com > /dev/null

doc=ascii_text

http_proxy=http://relay.orgn.ashton.csc.com:80/
export http_proxy

N=$1
N="expr $N + $N"
end="expr $1 + 1°

while ["$N" -ge "$end"]
do

echo "Test $N..."
(date>http-$N;lynx -source \
http://voyager.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
(date>http-$N;lynx -source \
http://lightspeed.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
done

BORG - High Volume

#!/bin/sh
PATH=/usr/bin:/bin:/usr/local/bin:/usr/ucb:/etc:/usr/etc; export PATH
Echo=/usr/5bin/echo

nslookup relay.orgn.ashton.csc.com > /dev/null
nslookup voyager.ashton.csc.com > /dev/null
nslookup lightspeed.ashton.csc.com > /dev/null

doc=1M

http_proxy=http://relay.orgn.ashton.csc.com:80/
export http_proxy

N=$1
N="expr $N + $N"
end="expr $1 + 1°

while ["$N" -ge "$end"]
do

echo "Test $N..."
(date>http-$N;lynx -source \
http://voyager.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
(date>http-$N;lynx -source \
http://lightspeed.ashton.csc.com/$doc>/dev/null;date>>http-$N)&
N="expr $N - 1
done

Summary Script

#!/usr/local/bin/perl
#
usage: httpsumm.pl http-* > file

$n_connects = $#ARGV + 1;
foreach (@ARGV) {
$file=9_;
$test_no = (split(/-/, $file))[1];

open (IN, $file) || die "could not open file $file\n";
$t1=<IN>;

$t2=<IN>;
close IN;

$t1 = (split(/ /, $t1))[3];
$t2 = (split(/ /, $t2))[3];

$t1h= (split(/:/, $t1))[O];
$tim= (split(/:/, $t1)[1]:
$t1s= (split(/:/, $t1))[2];
$timel = $t1h*60*60 + $t1m*60 + $t1s;

$t2h= (split(/:/, $t2))[0];
$t2m= (split(/:/, $2)[1];

$t2s= (split(/:/, $t2))[2];

$time2 = $t2h*60*60 + $t2m*60 + $t2s;
$actual_time = $time2 - $time1;
$real[$test_no] = $actual_time;

for (1..$n_connects) {
printf "Test # %3d Time: %d\n", $_, $real[$_]J;
}

Email Scripts

Used by both LIGHTSPEED and ENTERPRISE

#!/bin/sh

#

PATH=/bin:/usr/bin:/etc:/usr/etc:/usr/ucb; export PATH
Echo=/bin/echo

if [$# -eq 0]; then
$Echo "usage: $0 #_of_tests"
exit

fi

doc=1.2m.uu
nslookup relay.orgn.ashton.csc.com >/dev/null

N=$1
while [$N -ge 1]
do

echo Test $N
Mail -s "Test $N (Chostname™)" userl@orgn.ashton.csc.com < $doc
Mail -s "Test $N (“hostname™)" user2@orgn.ashton.csc.com < $doc
Mail -s "Test $N (“hostname™)" user3@orgn.ashton.csc.com < $doc
Mail -s "Test $N (Chostname™)" userd@orgn.ashton.csc.com < $doc
N="expr $N - 4°

done

Netperm-table

Script used to create the rule sets

#!/usr/bin/perl
#
if ! @ARGV) {
die "usage: $0 no_of_rules\n";

@addrs = ("195.1.1", "195.1.2", "195.1.3", "195.1.4", "195.1.5", "195.1.6",
"195.1.7","195.1.8", "196.1.1", "196.1.2", "196.1.3", "196.1.4", "196.1.5",
"196.1.6", "196.1.7", "196.1.8", "197.1.1", "197.1.2", "197.1.3", "197.1.4",
"197.1.5", "197.1.6", "197.1.7", "197.1.8", "198.1.1", "198.1.2", "198.1.3",
"198.1.4", "198.1.5", "198.1.6", "198.1.7", "198.1.8");

system ("cat netperm-table");

$c =0;
LOOP:
foreach (@addrs) {
foreach $h (2..254) {
print "tn-gw: deny-hosts ${ }.$h\n";

if ($c++ > SARGV[0]) {
last LOOP;
}
}

exit 0;

